

Показатели оценки инвестиций (Investment appraisal indicators)

Разделы: Метрики

Инвестиции, т.е. вложение капитала с целью получения прибыли, являются одним из наиболее развитых инструментов бизнеса. Однако с инвестициями всегда связаны риски: если инвестиционный проект убыточен, то можно частично или даже полностью потерять вложенные средства.

Поэтому прежде чем принимать <u>решение</u> об участии в том или ином инвестиционном проекте, необходимо всесторонне оценить его эффективность и учесть возможные риски. Для этого существует инвестиционный анализ — комплекс мероприятий, направленный на оценку целесообразности осуществления инвестиций, и связанных с ними рисков. Целью инвестиционного анализа является разработка обоснованного и эффективного решения об участии в том или ином инвестиционном проекте.

Важнейшим инструментом инвестиционного анализа (как, впрочем, и других видов анализа), является моделирование — процесс создания и исследования моделей, которые помогают принимать решения в сфере инвестиций. В инвестиционном анализе выделяют три типа моделей, использующих следующие группы параметров:

- 1. Денежные суммы текущую и будущую стоимость инвестиций.
- 2. Доходность нормы и индексы доходности.
- 3. Окупаемость скорость, с которой инвестированные в проект средства возвращаются, дюрация (период времени до момента полного возврата инвестиций) денежных потоков, генерируемых инвестиционным проектом.

В модели первого типа входят только денежные потоки. Модели второго типа учитывают изменение ценности денег во времени. В моделях третьего типа учитывается норма доходности инвестиций. В этих моделях рассчитываются следующие показатели:

Показатель	Формула расчета
Срок окупаемости инвестиций (PP). Время, за которое доходы покроют инвестиционные расходы.	$PP = \frac{I}{CF},$ где I — первоначальные инвестиции, CF — средний приток денежных средств за период

Показатель	Формула расчета
Дисконтированный срок окупаемости инвестиций (DPP). Срок окупаемости инвестиций, который учитывает изменение ценности денег.	$DPP = \sum\limits_{i=1}^n rac{CF_i}{(1+r)^i},$ где CF_i — денежный приток в i - ом периоде, r — процентная ставка, n — количество периодов
Коэффициент дисконтирования (Kd). Величина, которая позволяет рассчитать будущие потоки доходов, выражается в процентах.	$Kd=rac{1}{(1+R)^n}$, где R — норма дисконта, n — количество периодов
Текущая стоимость (PV). Оценка стоимости будущих денежных доходов в текущий момент времени.	$PV=rac{FV}{(1+r)^n},$ где FV — будущая стоимость, r — процентная ставка, n — количество периодов
Чистая текущая стоимость (NPV). Показатель, который определяет разницу суммы инвестиций и суммы будущих денежных потоков, приведенных к единой точке времени.	$\sum_{i=1}^{n} rac{CF_i}{(1+r)^i} - I,$ где CF_i — приток денежных средств в i -ом периоде, r — ставка дисконтирования, n — количество периодов, I — сумма инвестиций
Чистая будущая стоимость (NFV). Сумма ожидаемых будущих денежных потоков с учетом ставки дисконтирования.	$\sum_{i=0}^{n} CF_{i}(1+r)^{i},$ где CF_{i} — ожидаемый денежный приток в i -ом периоде, r — ставка дисконтирования, n — количество периодов
Индекс доходности (PI). Показывает, насколько выгоден или невыгоден инвестиционный вклад в проект.	$PI = rac{NPV}{I},$ где NPV — чистая текущая стоимость, I — инвестиции

Показатель	Формула расчета
Дисконтированный индекс доходности (DPI). Индекс доходности, который учитывает инвестиции за каждый период.	$DPI = rac{NPV}{\sum\limits_{i=0}^{n}rac{I_{i}}{(1+r)^{i}}},$ где NPV — чистая текущая стоимость, I_{i} — инвестиции в i -ом периоде, r — ставка дисконтирования, n — количество периодов
Дюрация (D). Период времени до полного возврата инвестиций. Также применяется для оценки риска процентных ставок.	$D=rac{\sum\limits_{i=0}^{n}PV_{i}t_{i}}{\sum\limits_{i=0}^{n}PV_{i}},$ где PV_{i} — текущая стоимость i -го платежа, t_{i} — момент времени i -го платежа, n — количество платежей
Внутренняя норма доходности (IRR). Ставка дисконтирования, при которой сумма первоначальных инвестиций равна сумме будущих денежных доходов. То есть чистая текущая стоимость равна 0.	$NPV = \sum\limits_{i=0}^{n} rac{CF_{i}}{(1+IRR)^{i}} - I = 0,$ где CF_{i} — приток денежных средств в i -ом периоде, I — сумма первоначальных инвестиций, n — количество периодов
Модифицированная внутренняя норма доходности с реинвестицией по цене капитала (MIRR). Показатель IRR скорректированный с учетом нормы реинвестиций.	$MIRR = \sqrt[n]{rac{\sum\limits_{i=1}^{n} CF_i(1+WACC)^{n-i}}{\sum\limits_{i=0}^{n} rac{I_i}{(1+r)^i}}} - 1,$ где CF_i — доходы за i -й период, I_i — расходы (инвестиции) за i -й период, $WACC$ — средневзвешенная стоимость капитала, r — ставка

реинвестирования, n- число

периодов

Показатель	Формула расчета
Эквивалентная ежегодная рента (NUS). Чистая текущая стоимость (NPV) пересчитанная в эквивалент аннуитета.	$NUS = \frac{NPV}{\sum\limits_{i=1}^{n} \frac{1}{(1+\frac{r}{100})^t}},$ где NPV — чистая текущая стоимость, r — ставка дисконтирования, n — число периодов, $t=1,2,\ldots,n$ — номер периода
Модифицированная чистая текущая стоимость (MNPV). Модифицированный показатель (NPV), который также учитывает уровень реинвестирования.	$MNPV = rac{\sum\limits_{i=1}^{n} CF_i(1+d)^{n-i}}{(1+r)^n} - \sum\limits_{i=0}^{n} rac{I_i}{(1+r)^i}$,

В настоящее время в моделировании в рамках анализа инвестиций широко применяются технологии <u>интеллектуального анализа данных</u> и <u>машинного обучения</u>, такие, как <u>нейронные сети, деревья решений, кластеризация, регрессия</u> и др. Они позволяют найти приемлемые решения даже в случаях, когда исходные данные частично искажены, являются неполными, содержат <u>шумы</u> и <u>выбросы</u>.

Поэтому применение современных аналитических моделей в инвестиционном анализе позволяет более обоснованно принимать решения о выборе инвестиционных проектов и снижать связанные с ними риски.