Нейрон искусственный (Artificial neuron)

Синонимы: Нейрон формальный, Нейроподобный элемент, Математический нейрон, Neuron, Node

Loginom: Нейросеть (классификация) (обработчик), Нейросеть (регрессия) (обработчик)

В области искусственного интеллекта и машинного обучения искусственным нейроном называют вычислительный элемент, представляющий собой математическую модель биологического нейрона, который используется в качестве базового элемента для построения искусственных нейронных сетей.

Искусственный нейрон имеет несколько входов (аналогов синапсов биологического нейрона) и единственный выход (аналог аксона). Каждый вход имеет некоторый вес, на который умножается значение, поступившее по данному входу. В теле (ячейке) нейрона происходит суммирование взвешенных входов, а полученная сумма преобразуется с помощью активационной (передаточной) функции нейрона, обычно нелинейной. Таким образом, работу искусственного нейрона можно описать формулами:

,

где — размерность входного вектора, — вес -го входа нейрона, — значение, поступающее на -й вход нейрона;

,

где — выходное значение нейрона, — активационная функция.

Искусственный нейрон (Artificial neuron)

Несмотря на то, что каждый нейрон в отдельности выполняет очень простую обработку данных, большое число нейронов, работающих параллельно в составе нейронной сети, позволяет ей аппроксимировать очень сложные зависимости в данных.

Значения на входе нейрона изменяются в интервале [0, 1]. Иногда в состав нейрона включают дополнительны вход с весом , который используется для задания порога чувствительности нейрона путем смещения активационной функции вдоль оси абсцисс.

Впервые концепция искусственного нейрона была предложена в 1943 году У. МакКаллоком и У. Питтсом.

Первый искусственный нейрон использовал ступенчатую активационную функцию единичного скачка (функцию Хевисайда).

Существует несколько способов классификации нейронов. По расположению нейронов в сети их разделяют на:

Нейронная сеть

Также нейроны могут быть классифицированы по виду активационной функции (графики функций представлены ниже не рисунке):

  • пороговый — имеет активационную функцию в виде жесткого (a) и «мягкого» (линейного) порога (б);
  • линейный — активационная функция имеет вид прямой линии;
  • бинарный — имеет активационную функцию, которая обеспечивает на выходе нейрона два состояния — 0 и 1 (a);
  • сигмоидальный — активационная функция такого нейрона имеет вид плавной -образной кривой — сигмоиды. Типичными представителями данного класса функций являются логистическая функция (в) и гиперболический тангенс (г).

Активационная функция

Кроме этого, нейроны разделяют на детерминированные и стохастические (вероятностные). В последнем случае переключение состояния нейрона происходит с вероятностью, зависящей от аргумента активационной функции.

results matching ""

    No results matching ""