Дельта-правило (Delta rule) Скачать в PDF
Разделы: Алгоритмы
Дельта-правило — метод обучения перцептрона на основе градиентного спуска. Дельта-правило развилось из первого и второго правил Хебба. Его дальнейшее развитие привело к созданию алгоритма обратного распространения ошибки. Правило основывается на уменьшении выходной ошибки перцептрона.
Пусть — вектор входных сигналов, а — вектор сигналов, которые должны быть получены от перцептрона под воздействием входного вектора. Здесь — число нейронов, составляющих перцептрон. Входные сигналы, поступив на входы перцептрона, были взвешены и просуммированы, в результате чего получен вектор выходных значений перцептрона. Тогда можно определить вектор ошибок , размерность которого совпадает с размерностью вектора выходных сигналов.
Компоненты вектора ошибок определяются как разность между ожидаемыми и фактическими значениями на выходных нейронах персептрона:
.
При таких обозначениях формулу для корректировки -го веса -го нейрона можно записать следующим образом:
,
номер сигнала изменяется в пределах от единицы до размерности входного вектора . Номер нейрона изменяется в пределах от единицы до количества нейронов . Величина — номер текущей итерации обучения.
Таким образом, вес входного сигнала нейрона изменяется в сторону уменьшения ошибки пропорционально величине суммарной ошибки нейрона. Часто вводят коэффициент пропорциональности , на который умножается величина ошибки. Этот коэффициент называют скоростью обучения.
Таким образом, итоговая формула для корректировки весов:
.