Дисперсия (Variance)

Разделы: Метрики

Loginom: Статистика (визуализатор)

В статистике дисперсией называют величину, которая характеризует меру разброса значений случайной величины относительно ее математического ожидания. В русскоязычной литературе дисперсия обозначается , а в англоязычной (от англ. variance — дисперсия).

Пусть — случайная величина, определённая на некотором вероятностном пространстве. Тогда дисперсией называется

,

где — математическое ожидание.

  • Если случайная величина дискретная, то:

,

где -ое значение случайной величины, — вероятность того, что случайная величина принимает значение , — количество значений случайной величины.

  • Если случайная величина непрерывна, то:

,

где — плотность вероятности случайной величины.

Квадратный корень из дисперсии, обозначаемый , называется среднеквадратическим отклонением.

Свойства дисперсии:

  • Дисперсия любой случайной величины неотрицательна: ;
  • Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;
  • Если случайная величина равна константе, то её дисперсия равна нулю: .
  • Дисперсия суммы двух случайных величин равна:

,

где — их ковариация.

  • Для дисперсии произвольной линейной комбинации нескольких случайных величин имеет место равенство:

,

где .

Дисперсия является одним из параметров нормального закона распределения. Чем больше дисперсия, тем более пологими являются «склоны» распределения и длиннее его «хвосты».

Чем выше дисперсия параметров модели (коэффициентов регрессии, значений переменных и т. д.), тем менее устойчивой она будет. Высокая дисперсия исходных данных позволяет предположить о высокой значимости в них случайной компоненты, возможном наличии шума и аномальных значений.

results matching ""

    No results matching ""