Риск (Risk) Скачать в PDF
В широком смысле риск — это возможность потери чего-либо, имеющего ценность: материальных и финансовых ценностей, репутации, физического здоровья и т.д. Потери могут быть понесены при принятии риска в результате действия или бездействия. Риск может быть предвиденным или непредвиденным (запланированным и незапланированным).
Часто риск определяют как «намеренное взаимодействие с неопределенностью». Под неопределенностью понимают потенциальный, непредсказуемый и неконтролируемый результат; риск является следствием действий, предпринимаемых несмотря на неопределенность.
Восприятие риска людьми субъективно: понятие о серьезности и вероятности риска для разных людей различно. Любая человеческая деятельность несет в себе определенный риск, но некоторые области гораздо рискованнее других.
Риск предполагает неуверенность или невозможность получения достоверного знания о благоприятном исходе в заданных внешних обстоятельствах. Численно риск может быть измерен с помощью вероятности неблагоприятного исхода на основе некоторых статистических данных.
Практически каждый человек, чем бы он ни занимался, всегда сталкивается с необходимостью оценивать риск и на основе этой оценки принимать решение о целесообразности связанного с риском действия. Во всякой области деятельности существуют свои подходы к идентификации и оценке рисков, а также к разработке мер, направленных на их уменьшение или преодоление возможных последствий.
Направление деятельности, в рамках которого решаются перечисленные задачи, называется управлением рисками, а специалисты в данной области — риск-менеджерами.
Выделяют следующую классификацию рисков.
Тип | Описание |
---|---|
Субъективный | Риск, последствия которого невозможно объективно оценить |
Объективный | Риск с точно измеримыми последствиями |
Финансовый | Риск, прямые последствия которого заключаются в денежных потерях, например неожиданная изменчивость или волатильность доходов |
Нефинансовый | Риск с неденежными потерями |
Динамический | Риск, вероятность и последствия которого изменяются в зависимости от ситуации, например риск экономического кризиса |
Статический | Риск, практически не меняющийся во времени риск, например риск пожара |
Фундаментальный | Несистематический, недиверсифицированный, риск с тотальными последствиями |
Частный | Систематический, диверсифицированный, риск с локальными последствиями |
Чистый | Риск, последствиями которого могут быть лишь ущерб или сохранение текущего положения |
Спекулятивный | Риск, одним из последствий которого может быть выгода, — не существует по определению, а является дуальным случайным событием, сочетающим риск и шанс |
Страховой | Событие, наступление которого не определено во времени и в пространстве, независимое от волеизъявления человека, опасное и создающее вследствие этого стимул для страхования |
В области анализа данных обычно речь идет о рисках в сфере бизнеса: финансовых, кредитных, инвестиционных и т.д., связанных с возможностью финансовых потерь и убытков.
Аналитические технологии Data Mining предоставляют комплекс методов оценки степени риска и возможных потерь, прогнозирования рисковых событий, а также оценки ресурсов, требуемых для уменьшения риска или компенсации потерь, наступивших вследствие неблагоприятного исхода.
Одним из важных приложений Data Mining является анализ и оценка кредитных рисков, связанных с несвоевременным возвратом, или невозвратом заемных средств. Для этих целей может использоваться практически весь арсенал моделей и алгоритмов Data Mining: классификации, регрессии, кластеризации и прогнозирования.
Например, классификация позволяет сортировать клиентов по их надежности (лояльности), регрессия дает возможность оценивать вероятность возврата (или невозврата кредита), а также возможные убытки. С помощью кластеризации можно выделять группы клиентов по уровню связанного с ними риска. Прогнозирование позволяет предвидеть изменение экономической ситуации, которая может повлиять на степень риска.
Особенно привлекательным в этой связи выглядит применение моделей, основанных на обучении, таких как нейронные сети, деревья решений, карты Кохонена и др. Это связано с тем, что кредитные организации, ведущие строгую отчетность, как правило, имеют хорошо организованную систему сбора и консолидации данных, что позволяет использовать их с целью обучения аналитических моделей для решения самых разнообразных задач анализа.
Применение современных аналитических методов и моделей для анализа и оценки рисков открывает новые возможности по разработке эффективных мер уменьшения рисков и связанных с ними потерь.